改进三次指数平滑算法的数据库资源预测模型研究

打开文本图片集
Research on Database Resource Prediction Model with Improved Triple Exponential Smoothing Algorithm
Qiu Yufeng,Liang Kehui, Xu Feng (ChinaUnionPay Co.,Ltd.,Shanghai 201201,China)
Abstract:Thetraditionaltripleexponentialsmoothingalgorithmiswidelyusedintrendprediction,butithaslimitationsin handlingsudnfluctuationsandmulti-periodcharacteristicsofdatabaseresoureeload:itssmothingoeficientsaretaticallyset andcannotbedynamicallyadjustedtoadapttorapiddatachanges,resultingininsuficientadaptabilitywhenfacingsharp fluctuationsinresourceusageorcomplexperiodicity.Toadressthisissue,thispaperproposesanimprovedtripleexponential smoothingalgorithminthecontextofdatabaseresourceprediction.Firstly,thealgorithmintegratestheSavitzky-Golayfiltering techniquetoefectivelyremovehigh-frequencynoisefromdataandensurethepurityoftheinputsignal.Meanwhile,itincorporates adynamicsmothingcoeficientmechanism,enablingthemodeltoadjustparametersinrealtime,flexiblyrespondtorandom fluctuations,accuratelycapturelong-termtrendchanges,andmakefulluseoftheinherentlawsofmulti-periodpatens.Such comprehensiveoptimizationnotonlyenhancesthemodel'srobustnessbutalsosignificantlyimprovestheacuracyofdatabasecloud resourceprediction.Ultimatelyitahieveshg-precisionresouceutilizationpredictionprovidingeliableandsientificsuportfor database cloud resource management decisions.
Keywords:TripleExponentialSmoothingAlgorithm;Savitzky-GolayFiltering;DynamicSmothingCoeficient;;DatabaseCloud Resource Forecasting
0引言
随着数字化转型的深入推进,数据库作为信息系统的核心数据存储与处理载体,其资源负载呈现出高频波动、非线性变化的复杂特征。(剩余7159字)