改进三次指数平滑算法的数据库资源预测模型研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

Research on Database Resource Prediction Model with Improved Triple Exponential Smoothing Algorithm

Qiu Yufeng,Liang Kehui, Xu Feng (ChinaUnionPay Co.,Ltd.,Shanghai 201201,China)

Abstract:Thetraditionaltripleexponentialsmoothingalgorithmiswidelyusedintrendprediction,butithaslimitationsin handlingsudnfluctuationsandmulti-periodcharacteristicsofdatabaseresoureeload:itssmothingoeficientsaretaticallyset andcannotbedynamicallyadjustedtoadapttorapiddatachanges,resultingininsuficientadaptabilitywhenfacingsharp fluctuationsinresourceusageorcomplexperiodicity.Toadressthisissue,thispaperproposesanimprovedtripleexponential smoothingalgorithminthecontextofdatabaseresourceprediction.Firstly,thealgorithmintegratestheSavitzky-Golayfiltering techniquetoefectivelyremovehigh-frequencynoisefromdataandensurethepurityoftheinputsignal.Meanwhile,itincorporates adynamicsmothingcoeficientmechanism,enablingthemodeltoadjustparametersinrealtime,flexiblyrespondtorandom fluctuations,accuratelycapturelong-termtrendchanges,andmakefulluseoftheinherentlawsofmulti-periodpatens.Such comprehensiveoptimizationnotonlyenhancesthemodel'srobustnessbutalsosignificantlyimprovestheacuracyofdatabasecloud resourceprediction.Ultimatelyitahieveshg-precisionresouceutilizationpredictionprovidingeliableandsientificsuportfor database cloud resource management decisions.

Keywords:TripleExponentialSmoothingAlgorithm;Savitzky-GolayFiltering;DynamicSmothingCoeficient;;DatabaseCloud Resource Forecasting

0引言

随着数字化转型的深入推进,数据库作为信息系统的核心数据存储与处理载体,其资源负载呈现出高频波动、非线性变化的复杂特征。(剩余7159字)

monitor
客服机器人