基于边缘对比学习的持续关系抽取

打开文本图片集
中图分类号:TP391.1 文献标识码:A文章编号:1006-8228(2025)11-13-06
Continual Relation Extraction Through Margin Contrastive Learning
Zuo Yang,Wang Congcong,Ge Baoquan
(SchoolofArtificialIntelligence,XinjiangVocationalUniversityofTechnologyKashgar,Xinjiang844ia)
Abstract:TheContinualRelationExtractionmodelisre-trainedwithdatasetscontainingnewrelations,iteasilyleadstothe catastrophicforgetingproblemcausedbyre-weightingthemodelparametersofrelevantpriorrelationtypes,especiallynearthe decisionborderlineofanalogousrelationpairs.Therefore,weproposetheMarginalContrastiveLearing-basedContinualelation Extractionmodel(MCL-CRE).Ourmodeladoptsmarginalcontrastivelearningtoenhancetheabilitytodistinguishexisting relationsfromnewrelationsandenlargesthedistancebetweeanalogousrelationrepresentationsnearthedecisionborderline. Experimentalresultsshowthatourmodelcanstablydistinguishanalogousrelations,andachievesignificantresultsonthe unbalanced TACRED dataset.
Keywords:ContinualRelation Extraction; CatastrophicForgeting;Analogous Relations;Marginal ContrastiveLearning
0引言
在自然语言处理(Natural Language Processing,NLP)领域,信息抽取(Information Extraction,IE)的核心作用是从非结构化的数据中提取结构化的知识。(剩余9613字)