多视角驱动的个性化课程推荐研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP319 文献标识码:A 文章编号:1006-8228(2025)11-07-06

Research on Multi-Perspective Driven Personalized Course Recommendations

DiaoLijuan,Wu Wei,Li Jizhao,JinXinying,Zhao Haibo,GengHao (North China Institute ofAerospace Engineering,LangFang,Hebei O65ooo,China)

Abstract:WithhewidespreadadoptionofMassveOpenOnineCourses(MOOC)platforms,learnersnowhaveaccesstoabundant educationalresources.Howeverwithinthisvastlandscapeofleaingmaterils,personalizedcourseselectionpresentscertain chalenges.TraditionalrecommendationmodelslacksuficientinterpretabilityForthisreason,thispaperproposesacourse recommendationmodel(CR-GCNMP)basedongraphconvolutionalnetworks(GCN)andmulti-viewmeta-paths,whichenhancesthe accuracyandrationalityofrecommendationsbyintegratingtheideaofpredictingpreferencesbasedonassociativeinteractionsin colaboratieodelsistaphonvolutioaletworkcusielypropagateslaeouseinteractioifoatiotoneateig orderemeddingsatptureollbatieifatioecodul-rspectivemeta-pathsetractedfrohulti-sioal atributecourseknowledgegraph.BidirectionalLSTMmodelsarethenemployedtoestablishseparatebidirectionalsemanticmodels forlearnerpreferencesandcoursesuitabilityFinallyanatentionmechanismdyamicallyaggregatesmeta-pathweightstogeerate interpretablerecommendationresults.ThispaperconductedexperimentsonthepublicdatasetXuetangX.Theexperimentalresults showthat CR-GCNMP outperforms the baseline models by 1.1% , 7.2% ,and 8.1% in Precision@10,Recall@20,and NDCG@5, respectively,andefectivelyenhancesthelearningexperienceandlearningoutcomesoflearnersononlinelearningplatforms. Keywords:CollaborativeModel;CourseRecommendation;GraphNeural Network;Multi-Perspective Meta-Path

0引言

近年来,大规模开放在线课程(Massive OpenOnlineCourses,MOOC)已成为全球教育领域的重要资源,吸引了广大学习者的关注。(剩余7424字)

monitor
客服机器人