基于大语言模型两阶段微调方式的高校心理测评报告信息提取研究

打开文本图片集
中图分类号:TP399 文献标识码:A 文章编号:1006-8228(2025)11-41-05
Research on Information Extraction from University Psychological Assessment Reports Using a Two-Stage Fine-Tuning Approach Based on Large Language Models
Li Ziying,Hu Zhichen, Zhao Yongjie (Zhenjiang College,Zhenjiang,Jiangsu ,China)
Abstract:Inthegeneralpsychologicalassessmentofcollgestudents,psychologicalasessmentreportsreflectindividuals' psychologicalstatesthroughkeyinformationsuchassymptomdescriptions,emotionalexpressionsandinterventionrecords. However,suchreportshaveproblemssuchasalargenumberofprofessonalterms,significantvariabilityinexpressionsanda smallamountoflabeleddatawhichresultinpoorperformanceoftraditionalinformationextractionmethods.Thispaperpresentsa two-stagefine-tuningmethodwiththehelpoflargelanguagemodels,namedPsych-LLME.First,aninstructiontemplatefor psychologicaldiagnosisandtreatmentiscreatedandsimulateddataisgeneratedOnthisbasis,dataaugmentationtechiquesare usedtoexpandtheavailabletrainingsamples.Ten,thelow-rankadaptationtechnologyisusedtoquicklyfine-tunelargelanguage modelssuchasLlama2toimprovetheirunderstandingofpsychologicalprofesionaltexts.Thisresearchprovidesaneffective solutionfortheintelligentprocessingofcollegepsychoogicalasessmentreportsandisofgreatsignificanceforpromotingthe digital transformation of college mental health services.
Keywords:LargeLanguageModels;sychologicalAssessmentReports;UniversityMentalHealthServices;DigitalTransfoation
0引言
心理测评报告作为心理健康评价的关键载体,不仅记录了个体的症状表现、情绪特点和认知模式,还贯穿于干预进程的始终,为临床诊断、疗效跟踪和心理研究提供了重要依据1。(剩余6605字)