基于模块度增强与双监督嵌入的社区发现算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP18 文献标识码:A 文章编号:1006-8228(2025)09-16-07

Abstract:Incomplexnetworkanalysis,communitystructureisanimportantcharacterizationofnetworkfunctionsandorganization Existingcommunitydetectionmethodssufferfromisuessuchasneglectingigh-orderstructures,dificultyineplyfusing atributeandstructuralinformation,andsuboptimalsolutionscausedbytheseparationofembeddinglearningandclusterigtasks. Toaddresstheseproblems,acommunitydetectionalgorithmbasedonmodularityenhancementanddual-supervisedembeding (MEDSE)isproposed.Thealgorithmextractsnodeatributeinformationthroughaselfatentionencoder,reconstructsthgraph convolutionalnetworkusinganon-negativemodularitymatrixtoenhancetheabiltytoextracthigordertopologyfusesatribute andtopologicalinformation,andaleviatestheover-smothingproblemoftraditionalGCN.Adual-supervisedmechanismis employedtoguidetheunsupervisedclusteringofthemodel,makingnetworkembeddingorientedtowardsthecommunitydetection task.Comparativeexperimentswith14benchmarkalgorithmsshowthattheMEDSEalgorithmcanefectivelyperformcommunity detection on different datasets with higher accuracy.

Keyords:NetworkEmbedding;CommunityDetection;Self-AtentionEncoder;GaphConvolutionalNetwork;HigherOrderStructure

0引言

在复杂网络分析中,社区结构是网络功能单元的重要表征,对理解网络的结构和功能具有重要意义。(剩余10007字)

monitor
客服机器人