基于改进遗传算法的NGSPooling分组优化

打开文本图片集
中图分类号:0141.4 文献标识码:A文章编号:1006-8228(2025)09-12-04
Abstract:Next-GenerationSequencing(NGS),ahigh-throughputtechnologywidelyusedinbiomedicalresearchandapplications, oferstheadvantagesofrapidandcost-effectivesequencingofgeneticmaterial.Leveragingthehigh-throughputcharacteristicsof NGS,barcode-basedmultiplexsequencingenablespoledsequencingof multplesamples,significantlyimprovingsequencing eficiencyandreducingcosts.However,inlarge-scalesamplepolingexperiments,maximizingchiputilization,minimizingbarcode conflictrates,andensuringhigh-qualitysequencingdataremainkeychalenges.Inthisstudywedevelopedasoftwaresystem basedonoperationsresearchoptimizationmodelsandintllgentoptimizationalgorithmstorapidlyperformautomatedsample grouping.Thesystemsubstantiallenhanceschiputilization,shortenswaitingtimeforgrouping,andavoidssampleindexconflicts. Experimental results demonstrate the effectiveness of the proposed algorithm and model.
Keywords:Next-GenerationSequencing(NGS);SamplePooling;AutomatedGrouping;OperationsResearch OptimizationModel; Intelligent Optimization Algorithm
0引言
高通量测序(Next-Generation Sequencing,NGS)作为一种前沿的测序技术,已被众多生物医学研究机构广泛应用于遗传性疾病研究、突变识别及个性化治疗方案开发等领域,对于深入理解并有效治疗罕见病和部分遗传性癌症具有重要意义。(剩余5070字)