改进YOLOv5 与DeepSort 的车辆目标检测跟踪算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:针对当前目标车辆因遮挡、天气等因素造成的漏检,以及跟踪过程中车辆身份丢失和变换等现象,本文提出了一种改进的YOLOv5与DeepSort车辆检测跟踪算法。在车辆目标检测部分,本文在YOLOv5网络中添加了注意力模块CBAM,以更有效地提取目标特征;同时,引入了SIoU作为边界框损失函数,不仅提升了边界框定位的准确性,也加快了边界框的回归速度。(剩余1491字)

目录
monitor