基于Logistic回归和决策树构建卵巢癌病人营养风险预测模型

打开文本图片集
AbstractObjectie:Tocostructautrioaliskpredictioodelfovariancacerpatitsasedonlisicegeionndasiicato andregressiontreCATMetos:Atotalof326varancancerpatentsadmitedtotheoncologydepartmentoftertiaryspialin Jiangxi provincefromNovember2023 to September2024 wereselectedasthestudysubjects byconveniencesampling.Generaldataof thepatientswerecolectedTeutritionaliskofthepatientswaaessed.Apredictiemodelforutritionalrskinovarancancer patientswasestablishedbasedonLogisticregresionanddecisiontre models.InfluencingfactorswereanalyzedResults:Theincidenceof nutritional risk in ovarian cancer patients was 50.92% .TheLogistic regression analysis showed that average monthly income,tumor pathological type,chemotherapy,and hypoproteinemia were influencing factorsofnutritional risk inovariancancer patients .-0.05 .The decision tree modelresultsdicatedthatemotherapy,tmorpathologicaltypeerageonthlyicome,yoalbuminemia,ag,ndplot status wereinfluencingfactorsofnutritionalriskinovariancancerpatients.Theareaunderthereceiveroperatingcharacteristiccurve (AUC)fortheLogistic modelwas 0.80.Theaccuracy was0.73.The sensitivity was 0.819.The specificitywas0.644.TheYouden's indexwasO.463.TheAUCforthedecisiontree modelwasO.802.TheaccuracywasO.742.ThesensitivitywasO.831.Thespecifity wasO.650.TheYouden'sindex wasO481.Concusios:oththeLgisicregresionanddecisiontreemodelsshowedgooddiscinatory ability.Tecombineduseoftwomodelswasbeneficialforteearlyidenticationandmanagementofnutritionaliskinovariancancer patients.Itcouldprovideaeferenceforthecomprehensiveprevention,treatment,andrehabilitationmanagementofgynecological malignant tumors.
Keywordsovarian cancer; nutritional risk; Logistic regression;decision tree; risk prediction; influencing factors摘要目的:基于Logistic回归和分类与回归树(CART)算法构建卵巢癌病人营养风险预测模型。(剩余9875字)