注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要:为提高风电功率预测精度,提出基于自适应二次模态分解(QMD)、卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)的超短期风电功率预测模型。针对风电功率的波动性,利用改进的完全自适应噪声集成经验模态分解方法(ICEEMDAN)对风电功率数据进行分解。引入麻雀搜索算法(SSA)对变分模态分解(VMD)的分解数量与惩罚因子进行优化,使VMD具有自适应性。(剩余8943字)
登录龙源期刊网
购买文章
基于自适应二次分解与CNN-BiLSTM的超短期风电功率预测
文章价格:5.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00