基于VMD和改进BiLSTM的短期风电功率预测

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:精准的短期风电功率预测对电力系统稳定运行至关重要。为提高短期预测精确度,提出一种基于变分模态分解(VMD)-样本熵(SE)和利用注意力(attention)机制改进双向长短期记忆网络(BiLSTM)以及误差修正的组合预测模型。首先,采用VMD将原始功率数据分解为若干个相对平稳的子序列,重构样本熵值相似分量以降低复杂性;然后,引入Attention对BiLSTM 的隐含层状态输出分配相应的权重以突出重要影响的输入特征,同时采用极限梯度提升(XGBoost)对误差进行修正,从而进一步提高预测精确度;最后,将初步预测值和修正预测值相加得到最终结果。(剩余11314字)

目录
monitor