代谢综合征的影响因素分析及列线图模型构建:横断面研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

Abstract:Objective:This study aimed to investigate the prevalence determinants metabolic syndrome(MetS) amongthepopulationin (Southern ),todevelopanomogram forMetS prediction.Methods:In2022, amulti-stage stratified rom sampling method wasused toselect permanent residentsaged 35years above in southern asstudyparticipants.MetSwasdefinedacordingtotheInternationalDiabetesFederation(IDF)criteria. Participants'demographics,medical history,blood biochemistrydata,anthropometric variableswerecolected to screen forsignificantvariablesforthe prediction modelMetS.Multivariablelogisticregresionwas employedto explore thefactors associatedwithMetS.Subsequently,thedataweredividedintoatrainingsetavalidationset,anomogram wasdeveloped tocreatethepredictive model forMetS.The training set wasutilizedfornomogrammodelconstruction preliminaryvalidation,whilethevalidationsetwasusedfor internalvalidation.Theperformance thenomogram was assessed basedonreceiver operating characteristic curve(ROC),calibration curves, decisioncurveanalysis (DCA).Results:Atotal1581participants wereenrolled in thestudy,revealingaprevalence MetS 27.39 % (20 ( 95%CI : 25.19 % -29.59 % ).The age-stardized prevalence was calculated to be 27.81% .Ninevariableswere identifiedasinfluencingfactorsforMetS:ge,residence,occupation,historyhperlipidemia,historyhyperuricemia, hip circumference,glycated hemoglobin Alc(HbAlc),resting heart rate(RHR), body massindex(BMI).The participants were romlydivided into a training set (n=1 107, 70% ) a validation set (n=474, 30% ). The nomogram wasvalidated through preliminaryvalidationarea under curve(AUC:O.844) internal validation(AUC:0.825). Calibration plots demonstratedgoodagreementinthe trainingsets.Conclusion:The prevalence MetS isnotably high in ,.Thenomogram,whichisbasedonage,residence,occupation,history hyperlipidemia,history hyperuricemia,hipcircumference,HbAlc,RHRBMIvariables,exhibits strong predictive eficacycanbeutilizedto assess the risk MetS in middle-aged elderly populations.

KeyWords:;Metabolicsyndrome;Prevalence;Influencing factors;Nomogram CLCNumber:R589 Documentcode:A ArticleID:1001-5779(2025)09-0837-10 DOI:10.3969/j.issn.1001-5779.2025.09.003

摘要:目的:探讨赣南地区人群代谢综合征(Metabolic syndrome,MetS)的患病情况及其相关影响因素,并构建代谢综合征的患病风险列线图预测模型。(剩余24066字)

monitor
客服机器人