基于改进MobileNetV2的钢筋混凝土桥梁病害分类识别

打开文本图片集
WU Lipeng1,²,YAN Xinyu1.2, JIN Zhecheng1,2
1. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang O50043,China; 2. Key Laboratory of Roads and Railway Engineering Safety Control (Shijiazhuang Tiedao University),Ministry of Education, Shijiazhuang O5O043, China)
Abstract:Inordertotimelyandefectivelydetectbridgediseases,overcometheinherentdefectsofthecurrntmanual visual inspectionmethod indisease investigation,whichis time-consuming,laborious,easytocause potential safety hazards,and easilyaffectedbysubjectivefactors,soastoprovidepreconditionsfortargetedbridgemanagement,anintellgentmethodwhich issuitableformobilediseaseimagerecognitionisproposed.Whilekeepingthewidthof theoriginalMobileNetV2network model unchanged,byreducing thenumberofbotleneck modulesandembeddingthe SqueezeandExcitationchannelatention mechanism inthebotleneck module,thecorrelationbetweenchannels isestablished,sothatthenetworkcanleamandutlize therelationshipbetweenfeaturechannelsmoreefectivelyTheresultsshowthattheaccuracyof imagerecognitionisimproved, aftertwo improvements inthenetwork modelofreducing botteneck moduleandembedding channelatentionmechanism,the recognition accuracy of 98.78% is achieved,which is 2. 85% higher than before the improvement and the computational cost is also reduced by 23.02M ;The improved network model is introduced into the GUI interface of Matlab,and the code is
visualizedasabridgediseaseidentificationsystemthatcanbeusedindependently,whichprovidesconveniencefortheefficient identification of four bridge diseases: efflorescence, steel corrosion, cracking and holes.
Key words:bridge;disease identification;MobileNetV2;attention mechanism;GUI
0 引言
桥梁是重要的交通基础设施,与国家建设、社会进步和人民福祉紧密相关。(剩余8821字)