基于遗传算法的神经网络对大体积混凝土监测优化研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TU755.4 文献标志码:A 文章编号:1005-8249(2025)03-0134-07

DOI:10.19860/j.cnki.issn1005-8249.2025.03.024

Abstract:Inorder tostudytheoptimallocationof temperatureandstressmonitoringofmassconcreteunderthecircumstanceof limited numberof sensors,thetemperatureand stressvaluesof measuring pointswereobtainedbyfiniteelement simulationto buildadatabase,andthehighfitofneuralnetworkandtheoptimizationcharacteristicsof geneticalgoritmwereusedtofitthe temperature fieldand stressfieldofmassconcrete andoptimizethelocationof sensors.Theresultsshowthat theRMSEbetween thepredictedandmeasuredvaluesofeachnodedecreasesfrom5.21to3.56,andthecoeficientofdeterminationincreasesfrom 0.71to0.91,andtheoptimizationefectisremarkable.Throughoptimization,thecondition monitoringrequirementsof mass concrete can be realized under the limited number of sensors,and the specific applicability is better.

Key words:neural network;genetic algorithm;mass concrete;temperature field;stressfield;monitoring position

0 引言

随着我国经济高速发展,大型基础设施数量日益增长,大体积混凝土成为不可或缺的组成部分[1]大体积混凝土存在水化热高、散热困难、裂缝控制难度高等问题,且浇筑仓块不同位置的温升规律存在一定差异[2],通过合理有效的状态监测,可及时发现并解决混凝土温升异常及裂缝问题。(剩余8244字)

monitor
客服机器人