多类算法融合的基坑沉降组合预测分析

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:U459 文献标志码:A 文章编号:1005-8249(2025)03-0128-06

DOI:10.19860/j.cnki.issn1005-8249.2025.03.023

Abstract:Toachieve high-precision predictionoffoundationpitsettlement,basedontheon-sitesettement monitoring

resultsof the foundation pit,thepolarsymmetricmodedecompositionalgorithmis firstusedtodecomposethesetlementdata,

obtaining several modal componentsand trend components.Then,thegrey wolf algorithmandgatedrecurrent unit neural

networkareused toconstructacombined prediction model,and thismodel isused topredictthedeformationof each modal

componentandtrendcomponent,inordertoobtainthecombined predictionvalueoffoundationpitsetlement.Theanalysis

results indicatethatcommonsetlement monitoring itemsduringfoundationpitconstructionincludesurfacesettlement,pittop

setlement,andbuildingsetlement;According tomonitoringdataanalysis,theremaining deformationspaceofthepittop setlementisrelativelythelargest,followedbybuildingsettlementandsurfacesetlement;Overall,theremainingdeforation spaceforthethree typesofsetlementanddeformationprojectsisstillrelativelyoptimistic,withonlyasmall numberof monitoring points having limitedremaining deformationspaceincertainareas;Intheprocessofdataprocessing,thepole symmetric mode decompositionalgorithmhasstrongdataprocessingability,anditsabilityissignficantlybetterthanthedata procesing efectofwaveletdenoisingand mode decompositionmethods.According toGWO-GRU prediction,therelativeerror mean of the prediction results of this model in three types of setlement projects is around 2% ,which has high prediction accuracy.Te predictionresultsshowthatthedevelopmenttrendofthethree typesofsetlementdeformationisrelatively consistent inthefuture,showingasmallrate increase trendandobviousconvergencecharacteristics.Thisindirectlyverifiesthe goodoperational efectoffoundationpitsupportmeasures.Throughresearch,itcanprovidetechnicalreferencesforsimilar projects and has certain practical significance.

Key words:excavation pit;setlement deformation;data decomposition;grey wolf algorithm;combination prediction

0 引言

近年,随着城市化进程的加快,基坑工程数量越来越多,基坑开挖会引发基坑周边土体变形,基坑沉降变形属基坑施工过程中的必测项目,姜伟玲等[1]、仇安兵[2]认为开展基坑沉降变形的相关研究具有较强的现实意义。(剩余6234字)

monitor
客服机器人