基于支持向量机回归的黄土湿陷性预测研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:黄土湿陷性;物性指标;相关性;支持向量机;预测模型

中图分类号:TU444 文献标志码:A 文章编号:1005-8249(2025)03-0073-05

DOI:10.19860/j.cnki.issn1005-8249.2025.03.014

Abstract:Toadressthechallenges inrapidandacurate predictionof loess collapsibilityin Central Gansuusingconventional methods,asupportvectormachineregression-based predictive modelwas developed.Leveragingdata fromarailwayprojectin thisregion,soil samplescollctedfrom manuall excavated testpitsunderwentcomprehensivelaboratorygeotechnicaltestingto obtainkey physical propertyidices.Correlations between losscollpsecoeffcientsandphysicalindicesweresystematicaly investigated through literatureanalysisandmathematical statistics.AGaussankemelfunction-basedSVMpredictionmodel wassubsequentlyestablished.The modelwastrainedwith45experimentaldatasets,while15datasetswereutilized forvalidationand eroranalysis.Resultsdemonstratethatthe modelachievesameanabsoluteeror(MAE)ofO.OO3,meanbias eror(MBE)ofO.Ol,androt meansquare error(RMSE)of O.O159onthetraining set.Forthetesting set,performance metrics indicate MAE=0.0132 , MBE=0.0018 ,and RMSE=0.015 .These findings confirm the model’s high predictive accuracyfortimatinglosscollapsecoefcientsinCentralGansu,providingareliableovelmethodologyforpracticalegining applications.

Key words:loess colapsibility;physical property index;correlation;support vector machine;prediction model

0 引言

湿陷性土壤在受到地下水或降雨作用后,会出现显著的变形,这对基础设施、房屋及其他工程建设构成潜在威胁[1]。(剩余4952字)

monitor
客服机器人