基于CT的深度迁移学习模型对甲状腺结节BRAFV600E 突变的预测价值

  • 打印
  • 收藏
收藏成功


打开文本图片集

[Abstract]Objective:Todevelopamachinelearningmodelbasedondeeptransferlearning(DTL)featuresextractedfrom CT images to predict the BRAFV600E mutation status in thyroid nodules.Methods :A retrospective analysis was conducted on 256 thyroid nodules from 192 patients.According to BRAFV600E genetic testing results,the nodules were categorized into amutantgroup(117nodules)andawild-typegroup(139nodules).Thedataset wasrandomlydividedintoatraining cohort(179nodules)anda validation cohort(77nodules)ata 7:3 ratio.The 3D ResNet-18 network was employed to extract512DTLfeaturesfromtheCTimages.Following featureselection,predictionmodelswereconstructedusing7machine learningalgorits,inludingecisiontree(D),andomforest(RF),lgisticgression(LR),supprtvctormacine(V), extremegradientboosting(XGBoost),K-nearestneighbor(KNN),andNaiveBayes(NB).Univariateandmultivariatelogistic regressionanalyseswereusedtoscreentheclinicalfeaturesandimagingfeaturestoconstructaclinicalmodel.Theprediction scoresofthebestmodelamong the7machine learning modelswerecombinedwiththeclinical featuresafterscreeningto constructacombinedmodel,andthenanomogramwasdrawn.Theaccuracyandclinicalutityofthecombinedmodelwere evaluatedusingcalibrationcurveanddecisioncurveanalysis.Results:SeventeenDTLfeatureswereselected.TheXGBoost modeldemonstratedthebestperformanceinthevalidationcohort,withanAUCof0.771(95%CIO.664-0.878).Univariateand multivariatelogisticregresionanalysesshowedthat,ageandmaximumdiameterofnoduleswereindependentpredictors of BRAFvooE mutation,which wereused to construct a clinical model,with an AUC of 0.741(95%CI 0.630-0.853)in the validationcohort.ThecombinedmodelwasconstructedbythepredictionscoreofXGBoostmodel,ge,andnodulemaximum diameter,with an AUC of 0.782(95%CI 0.679-0.884)in thevalidation cohort. The calibration curve indicated good consistency between the combined model results and gene testingresults,and thedecision curveanalysisshowed that thecombined model had a favorablenet benefit.Conclusions:Thecombinedmodelutilizing the XGBoostalgorithmdemonstratsfavorablepredictiveperformanceinnoninvasively predicting the BRAFV600E mutation status in thyroid nodules,potentiallyaiding clinicians in risk assessment. [Key words] mutation;Thyroidneoplasms;Carcinoma,papilary;Thyroidnodule;Tomography,X-raycomputed; Deep transfer learning

甲状腺乳头状癌(papillary thyroid carcinoma,PTC)是最常见的甲状腺恶性肿瘤类型(占 80%~ 90%),且近年来的发病率呈显著上升趋势[1-2]BRAFV600E 突变在PTC中具有重要的诊断与预后价值[3-4]。(剩余11104字)

monitor
客服机器人