一种基于贝叶斯的广义 Pareto 分布变点估计

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:文章研究广义 Pareto 分布单变点的估计问题,利用贝叶斯方法对广义 Pareto分布变点进行估计,模拟结果表明,贝叶斯方法能获得更好的效果。同时将贝叶斯方法与基于 KL 散度似然比统计量的极大似然法比较,得出贝叶斯方法效果更好。

关键词:广义 Pareto 分布;贝叶斯估计;极大似然估计

中图分类号:0212.8   文献标识码:A   文章编号:1009-3583(2024)-0108-05

A Bayesian Based Generalized Pareto Distribution Change Point Estimation

WANG Guo-qin1 , WU You-fu2* , XU Ting1 , OU Yong-ling1

(1.School of Data Science and Information Engineering, Guizhou Minzu University;2. Guizhou Communication Vocational College, Guiyang 550025, China;)

Abstract: The article studies the estimation problem of the single change point of the generalized Pareto distribution, and uses Bayesian methods to estimate the change point of the generalized Pareto distribution. Simulation results show that Bayesian methods can achieve better results. At the same time, comparing the Bayesian method with the maximum likelihood method based on KL divergence likeli- hood ratio statistic, it is found that the Bayesian method has better performance.

keywords: generalized Pareto distribution; Bayesian estimation; maximum likelihood estimation

在统计学中一个比较热门的研究问题就是变点问题,它被用于经济学、气象学、医学等领域。(剩余4786字)

目录
monitor