一类带有奇异项和临界增长的 Schr dinger -Possion次椭圆方程正解的存在性

打开文本图片集
摘要:本文研究了在 Heisenberg 群上具有奇异和临界增长的 Schrödinger-Possion 系统,利用 Brézis-Lieb 和 Brézis-Nirenberg 引理, 得到了正解的存在性和多重性.
关键词: Schrödinger-Poisson 系统;变分方法;扰动方法;Heisenberg
中图分类号: O177.91 文献标志码: A 文章编号:1009-3583(2024)-0091-08
Existence of Positive Solutions for a Class of Schr dinger-Possion Subelliptic Equations with Singular Termsand Critical Growth
ZHU Yi-ying1 , SUO Hong-min1* , AN Yu-cheng2 , ZHANG Peng3
(1. College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China;2. School of Science,Guizhou Institute of Engineering and Application Technology, Bijie 551700, China;3. School of Mathematics, Zunyi Normal Univer-sity, Zunyi 563006, China)
Abstract: This paper investigates the Schr ödinger-Posion system with singular and critical growth on the Heisenberg group. Using the Brézis-Lieb and Brézis-Nierenberg lemmas, the existence and multiplicity of positive solutions are obtained.
keywords: Schrödinger-Posion system; variational method; perturbation method; Heisenberg
一、引言和主要结果
文中我们在Heisenberg 群上考虑具有奇异和临界增长的 Schrödinger-Possion 系统
正解的存在性和多重性,其中 是实参数,是Heisenberg 群上的次Laplace 算子,是具有光滑边界的有界域.
Loiudice 在文献[2]中考虑了如下的次椭圆方程
当 q=2时,对于任意的。(剩余5146字)