AVMD及其在滚动轴承早期故障诊断中的应用

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:滚动轴承;早期故障;自适应变分模态分解;故障冲击度量指标;鹦鹉算法 中图分类号:TH133.3 文献标志码:A DOI:10.16385/j.cnki.issn.1004-4523.202404069

Abstract:Aiingatteprobtatitisdifiulttoauratelextractthicipietfultfeaturesoflingbarng,anicitfault diagnosismethodbasedonadaptivevariationalmodedecomposition(AVMD)isproposed.Anewfaultimpactmeasureindex(FMl)is established toguidethemulti-trategyimprovedparrotoptimizer(IPO)toadaptivelyotaintheoptimalparametercombination [K,α] of variationalmodedecomposition(VMD),soastorealizetheaccuratedecompositionoffaultsignal.Teprincipalfaultcharacteristic componentis extractedbasedontheFMmaximzationcriterionTefaultcomponentundergoes enhancedenvelopespectrumprocesingto identifythefaulttype.Numealsimulatiosndexperimentaldataconfiemetod’sfectivenssadfeasiblityfriciifault diagnosis ofrolling bearings,showcasing its superiority over existing techniques.

Keywords:rolingbarings;incipientfault;adaptivearationalmodedecomposition;fault-mpactmeasureindex;parototizer

滚动轴承因其摩擦力矩低、功耗小等优点,已成为目前旋转机械中最主要的零部件之一,在能源电力、航天航空、交通运输等机械领域得到了广泛应用,但同时也是故障率较高的零部件[1]。(剩余18890字)

monitor
客服机器人