基于机器学习的膀胱癌患者生存预测模型研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要:该研究旨在构建基于机器学习的生存预测模型,预测膀胱癌(BC)1、3和5年生存率,帮助医生准确识别预后较差的患者,并辅助临床预后方案制定。从监测、流行病学和最终结果(SEER)数据库中获取患者数据,基于逻辑回归(LR)、随机森林(RF)和梯度提升决策树(GBDT)和Cox比例风险模型(Cox proportional hazards)构建生存预测模型,通过在训练集和验证集中使用受试者工作特征曲线和校准度曲线评估模型性能。(剩余6353字)

目录
monitor