注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要: 为满足矿用机电设备的智能化故障诊断需求,基于数字孪生模型提出了一种故障特征提取与识别技术方案。该方案主要包括机电设备的数字孪生建模和故障特征提取与识别两方面。通过卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合模型完成数字孪生的建模;使用数据可视化技术和Z⁃score标准化方法对数据进行处理和筛选,利用小波变换方法进行故障特征提取,并设计一种基于CNN的故障识别算法。(剩余8499字)
登录龙源期刊网
购买文章
面向矿用机电设备数字孪生模型的故障特征提取与识别技术
文章价格:5.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00