融合GCN与Informer的序列推荐算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要: 为了解决长序列推荐算法的准确率低和冷启动问题,提高推荐算法的性能,提出一种融合GCN与Informer的序列推荐算法VGIN。使用图卷积网络提取数据中节点之间的空间特征,引入Informer模型来处理数据潜在的时间依赖性,再将两种特征输入多层感知器得出预测评分,实现长序列预测,改善长序列推荐效果较差的问题;同时利用变分自编码器(VAE)填补用户的数据缺失,改善用户冷启动问题。(剩余11771字)

monitor