基于天气特征的高速公路交通流预测方法研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要: 随着高速公路网络的规模扩展和智能交通系统的不断完善,交通流预测在提高道路资源利用效率和缓解交通拥堵方面起着至关重要的作用。现有的预测方法往往忽视了天气特征动态变化对交通流的影响,故文中旨在运用集成深度学习模型来探索天气特征对高速公路交通流的影响。利用随机森林算法从历史交通流量和天气数据中提取出相关性较高的天气特征,采用粒子群优化算法对长短期记忆神经网络模型的超参数进行优化,构建一个融合天气特征数据的深度学习预测框架,将经过筛选的天气特征序列输入至预测框架模型中进行训练和预测。(剩余12410字)

monitor