基于深度并行时序网络的用户侧异常数据智能诊断

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要: 在用户侧数据中,异常往往隐藏在复杂的时序关系中,传统的时序分析方法在处理用户侧数据中复杂的时序关系时存在困难,特征提取难以捕获关键特征,导致诊断精度低且易漏检。为此,研究一种基于深度并行时序网络的用户侧异常数据智能诊断方法。深度并行时序网络分解层利用滑动窗口法分割用户侧数据,得到数个窗口序列。(剩余8713字)

monitor