基于DDE⁃BIT的无人机高速公路护栏损坏检测

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要: 针对现有方法对无人机高速公路护栏损坏检测存在边缘信息提取效果差、识别精度低的问题,提出一种基于深度学习的变化检测模型DDE⁃BIT。首先,采用深度可分离卷积优化主干网络Resnet18,减少模型的参数数量,降低计算成本;然后,在主干网络输出部分引入ECA注意力模块,在仅增加少量参数的情况下提高模型的跨通道信息捕捉能力;最后,通过跳跃连接方式对BIT双时空图像转换器的输出特征进行堆叠,提高模型的上下文信息理解能力。(剩余9407字)

monitor