基于SCADA和投票分类模型的电力系统攻击检测技术

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要: 为检测电力系统中的网络攻击行为,文中提出一种基于电力数据采集与监视控制(SCADA)系统的攻击检测方法,探讨了机器学习方法作为检测电力系统攻击的可行性,并评估了其性能,讨论了机器学习模型作为攻击检测方法的意义。此外,还提出一种基于机器学习的投票分类模型(RES),其由RF、ET和SVM三种基本分类器构成,使用投票分类中的软投票方法,并且考虑了基本分类器的权重对投票分类模型的影响。(剩余11941字)

monitor