基于深度学习结合高光谱技术的大豆种子活力检测方法

打开文本图片集
关键字:大豆;种子活力;检测;高光谱;深度学习;注意力机制中图分类号:S127 文献标识码:A 文章编号:1000-4440(2025)05-0927-10
Abstract:To achieve eficient,accurate,and non-destructive identification of soybean seed vigor,this study used seedsofthesoybeanvariety Williams 82asexperimentalmaterials.Alibraryof soybeanseeds withdiferentlevelsof vigor wasconstructedthroughartificialagingtreatments.HyperspectralimagesandRGBimagesof theseedswerethencollected to generate three image datasets (RGB dataset,SIQ dataset,and ENVIdataset).Four deep learning models (Vg16Net, GoogLeNet,MobileV3Net,and ResNet-34)were employed to detectseed vigor,and theoptimal modelsand datasets were selected.Furthermore,thecoordinate atention(CA)mechanismandlabel smothing loss function were incorporated into theoptimal models toenhancetheirdetectionperformanceandrobustnessTheresultsdemonstratedthatusingtheSIQdata
set and ResNet-34 model,the recognition accuracy reached 97.6% and 96.8% on the training set and validation set,respectively.The detection performance was superiortoothercombinationsofmodelsand datasets.The CA-ResNet-34 model,which incorporated the CA mechanismand label smoothinglossfunction into the ResNet-34 model,achieved a detection accuracy of 98.5% for soy
bean seed vigor based onthe SIQdataset.Thisrepresentedanimprovementof1.7percentage points inaccuracycompared totheoriginal ResNet-34model.Theresultsofthis studycanprovideanew methodfortheaccurate,non-destructive,and efficient detection of soybean seed vigor.
Key words: soybean;seed vigor;detection;hyperspectral;deep learning;atention mechanism
大豆是中国重要的油料作物和经济作物,2023年中国大豆种植面积达 1.047×107hm2 ,产量约2.084×107 t。(剩余14180字)