基于脑电微分熵的警觉度估计方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:为提高人员警觉度实时估计精度,提出了一种基于微分熵(DE)、改进滑动平均和双向二维主成分分析(TD-2DPCA)的警觉度实时估计方法。首先将总频带以某一带宽分解为多个子频带,在每个子频带提取DE;然后结合警觉度的时间动态特征对传统滑动平均方法进行改进,利用改进滑动平均对DE进行了平滑处理;之后利用TD-2DPCA对DE进行降维,并采用最小二乘支持向量机(LS-SVM)建立特征矩阵与警觉度之间的回归模型,以实现警觉度的实时准确估计。(剩余14965字)

目录
monitor
客服机器人