基于非鲁棒特征的图卷积神经网络对抗训练方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:图卷积神经网络可以通过图卷积提取图数据的有效信息,但容易受到对抗攻击的影响导致模型性能下降。对抗训练能够用于提升神经网络鲁棒性,但由于图的结构及节点特征通常是离散的,无法直接基于梯度构造对抗扰动,而在模型的嵌入空间中提取图数据的特征作为对抗训练的样本,能够降低构造复杂度。借鉴集成学习思想,提出一种基于非鲁棒特征的图卷积神经网络对抗训练方法VDERG,分别针对拓扑结构和节点属性两类特征,构建两个图卷积神经网络子模型,通过嵌入空间提取非鲁棒特征,并基于非鲁棒特征完成对抗训练,最后集成两个子模型输出的嵌入向量作为模型节点表示。(剩余17966字)

目录
monitor
客服机器人