基于YOLOv4-Tiny 的硬件加速系统的设计与实现

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:随着神经网络算法的迅猛发展,将其部署在边缘设备上面临着功耗和计算时间的制约。针对YOLOv4-Tiny算法在资源受限的边缘端部署困难等问题,文章提出了一项软硬件协同优化策略。为了提升硬件资源使用率和推理效能,文章采用了输入输出通道与权重通道的双重缓冲机制,并在此基础上,结合双缓冲结构与强化的高度并行流水线设计,开发了一种基于Zynq FPGA硬件平台的目标检测加速系统。(剩余188字)

目录
monitor