基于SMOTETomek过采样方法与领域自适应迁移学习的风电机组故障诊断

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:为在不平衡数据上得到准确分类的故障诊断模型,提出将SMOTETomek过采样方法与领域自适应迁移学习相结合的故障诊断算法框架。首先利用滑动窗口采样技术将数据采样成二维时空窗口数据,然后执行SMOTETomek过采样操作,可保留并丰富完整的时序故障特征。针对过采样算法引入噪声信息的问题,引入领域自适应迁移学习算法在原始数据与过采样后的数据之间提取不变特征,使得过采样算法的引入的噪声信息可被过滤掉。(剩余19100字)

目录
monitor