基于高光谱特征的土壤水力特性参量反演方法研究

打开文本图片集
中图分类号:TV131 文献标识码:A 文章编号:1001-9235(2025)07-0101-14
Abstract:Toenrichemoteinversionmethodsofsoilhdraulicparametersandachieveafastandnondestructiveprediction,59high spectrali-situsoilsamplesinXiangzhouDistrict,ZuhaiCityrecollctedusingFieldSpec4spectrometer.Theremotehdraulic parameter models were established for two land types: grassland and bare land(saturated water content θε ,residual water content θr, inverseofairentryvalue α ,shapecoefficient n ,saturatedhydraulicconductivity Ks, and soil moisture content θ ).Theresultsare as follows. ① The spectral curves exhibit clearlinearityin three bands:700~750nm,830~1100 nm,and1520~1 620 nm,with the mean values of coefficient of determination for the linear fitting R2all over 0. 94. ② Among gradient boosting regression(GBR), partial leastsquaresregesionPLSR)andandoforest(RF)GBRpeforstheestandsoshighsensitivitytotelinearfitigater lga2(the logarithm of the slope) in the 83O-11OO nm band. It accurately predicts θε , α n ,and θ forgrassland types(Relative Percent Deviation, RPD > 1.4).For the bare land types,the coefficient of determination Rp2 for all hydraulic characteristic parameters, except soil moisture content θ ,is greater than O.9,and RPD exceeds 2.0. ③ In most hydraulic characteristic models predicting the grassland types,thefeatureimportanceofteleafareaindex(LA)isteghestTerefore,anectieinversionmodelisuiltbasedonfield spectraldataandLAI,withsimpleaccsstoiputparametersandgoodpredictionefect,providingapotentialforwideapplicatioin the future.
Keywords: unsaturated soils; hydraulic parameters; spectrum; machine learning;remote sensing inversion
土壤水力特性在研究土壤水分运动、溶质运移等方面具有重要作用[1]。(剩余17148字)