基于机器学习的珠江河口咸潮预测分析

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TV148 文献标识码:A 文章编号:1001-9235(2025)07-0001-10

Prediction and Analysis of Saltwater Intrusion in Pearl River Estuary Based on Machine Learning

Boheng, ZHANG Jingwen, KANG Zheng*, CHEN Yifan, HUANG Hanliang, LIN Kairong, XIAO Mingzhong (School ofCivil Engineering,Sun Yat-Sen University,Guangzhou51o275,China)

Abstract:Theaccelerationofurbanizationhas inducedasharpincreaseinurban waterconsumption,sothesaltwaterintrusionhas strongerinfluencesondomestic,industrialandagriculturalwateruseinestuarineareas.Toenhancethewatersupplysecurityof coastalcities,itisecssrytoanalyendpredictsaltwaterintrusionTisstudystofurthrinvesgatethifueceofrious factors,includingestuarytidelevel,winddirectionandspeed,andupsreamwaterflow,onthesaltwaterintrusion(chloritynthe estuary)inthePearlRiverestuary,providingscientificsupportforimproving watersuplysecurityincoastalcities.Thestudy determne thelagtimeofdiferentinfluencingfactorsonsaltwaterintrusiontroughcoelationcoeffcntsandconstuctsprdiction modelsforthechloridecontentattheestuariesoftheGuangchangand Pinggang waterpumpingstationsbasedonvarious machine learningmethods toanalyzethesaltwaterintrusioninthe ModaomenwaterwayofthePearlRiverestuary.Thestablishedmodelsshow agodperfomanceinpredictigsalinity.Accordingtotheanalsisofteimportanceofifueningfactors,itisfoundtatustram waterflow hasthegreatest influenceonsaltwater intrusion,followed byestuary tide leveland wind directionandsped.

Keywords: saltwater intrusion;machine learning;Pearl River estuary

磨刀门水道是西江的主要出海口门,其上游西江河段承担多座城市的供水任务,对珠江三角洲的区域水安全有着重要的意义[]。(剩余11429字)

monitor