基于迁移学习对棉花受海水胁迫情况判断的模型研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要 为探讨人工智能技术热点之一的迁移学习技术对棉花受海水胁迫程度情况判断进行端到端识别的可行性,以浓度为0(蒸馏水)、25%、50%和100% 的海水分别对30个棉花种质资源进行苗期胁迫20 d,将迁移学习应用于VGG16卷积神经网络,对不同浓度海水胁迫下棉花的顶视图和侧视图进行分类研究。结果表明,网络对棉花侧视图的测试准确率为80.00%,对顶视图的测试准确率为77.14%。(剩余8839字)

目录
monitor