基于FRFT和自适应滤波技术的LFM信号处理方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN911.7 文献标志码:A

Abstract:The fractional Fourier transform(FRFT)wascombined withatongue-likecurvevariable-stepadaptive filtering techniquebasedoncorrelationcharacteristics toprocesslinear frequencymodulation(LFM)signalscontaminatedbynoise. Simulationresultsdemonstratethatmostof thenoiseinLFMsignalscanbeflteredoutbyfirstappyingtheoptimal-orderFRFTtotime-domainsignals,followedbythetongue-likecurvevariable-stepadaptivefilteringalgorithmintheoptimalfractionalFourierdomain.Thisprocedurealowsforeffectiveextractionoftheusefulsignals.Underlowsignal-to-noiseratioconditions,theadaptiveflteringtechnologyoutperforms movingaverageprocesingand wavelet transformmethods,makingitmore suitableforextractingweaktargetsignalsfromhigh-intensitynoiseandbroadening itsrangeofaplications.Whenthe transformationorderisoptimal,thesignal erorconvergestoitsminimalvaluerapidly,andthefinalextremevaluereachedis the smallest,resultinginthebestflteringperformance.ThelargerthefrequencymodulationslopeoftheLFMsignal,thehigher thecorresponding optimal order,andthe meansquare erorundertheoptimalorder increases.For multi-componentLFM signalswithvarying intensities,asequentialextractionapproachoffirst extracting strongsignalsthen weak signalscanbeappliedtoextract diffrentcomponents step bystep.Thisapproach efectivelyreduces interferencefromstrong componentson weak components,thereby optimizing the extraction performance of the weak signals.

Keywords:fractionalFourier transform(FRFT);adaptive filteringalgorithm;linearfrequencymodulation(LFM)signal; variable step size

信号在传输过程中不可避免地伴有随机噪声,因而需要对接收信号进行处理以去除其噪声,从而有利于目标信号的准确提取。(剩余16081字)

monitor
客服机器人