注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘要:针对人工或机械振动筛对板栗分级精度低的问题,提出基于浅层卷积神经网络的板栗分级方法。用小米手机拍摄获取5种级别板栗的5481幅图像应用于卷积网络模型的训练、验证和测试。学习EfficientNet的网络结构,设计的浅层卷积神经网络(Efnet-1)由1个普通卷积模块和3个MB卷积模块构成板栗图像特征提取器。(剩余9838字)
登录龙源期刊网
购买文章
基于改进EfficientNet的板栗分级方法
文章价格:5.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00