数据驱动的时延神经网络动载荷识别方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要: 载荷识别是指根据测量的结构响应重构结构载荷的问题,属于力学中的反问题。本文提出了一种基于时延神经网络的载荷识别方法,通过实验和仿真相结合的数值算例验证表明,这一方法相比于一般的反向传播神经网络具有更高的识别精度;在时延神经网络的基础上,引入了统计池化的思想,并与普通的神经网络载荷识别方法相比较,证明了该方法在不同强度的噪声环境下均具有良好的识别效果;基于上述载荷识别方法,提出了一种基于粒子群优化算法的传感器布局优化策略,相比于随机的传感器布局,优化后的传感器布局可以在考虑传感器安装间距的同时,将载荷识别误差降低90%以上,有效提高了载荷识别精度。(剩余15606字)

monitor