基于AdaBoost和AAM的面部特征点检测技术研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要:文章报告了面部特征点检测的现状,分析了AdaBoost算法的分类性能和AAM模型的建模特性。对面部特征点检测进行了研究,通过训练多个弱分类器并组合它们,提高了面部特征点检测的准确性和鲁棒性。利用AdaBoost强分类器识别的结果作为AAM模型训练的输入,提取面部特征点候选区域,降低了AAM模型重构次数,进一步降低了计算复杂度,尤其是在面部姿态和表情变化较大的情况下,提高了匹配的准确率。(剩余7930字)

目录
monitor