基于手势识别的DeepLabV3+算法研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要:文章为解决手势识别研究中欠缺考虑多时相、特征多样性的问题,提出了一种基于改进DeeplabV3+模型的手势识别提取方法。通过更改模型中ASPP模块结构,使用多个不同的空洞率以及图像金字塔池化等操作,增加CBAM注意力机制模块,提升模型的提取精度和效率。在公开Freihand数据集上进行验证,结果表明:改进后的DeeplabV3+模型训练速度提高了29.2%,识别精确度提升了0.04%,相似度提升了0.68%,召回率提高了0.36%。(剩余7807字)

目录
monitor