注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要:后门攻击对人工智能的应用构成潜在威胁。基于遗忘的鲁棒训练方法可通过隔离后门样本的子集并遗忘该子集,实现在不受信的数据集上训练无后门的模型。然而,错误隔离并遗忘干净样本会导致模型在干净数据上的性能受到损害。为了减少对干净样本的错误隔离,进而保护模型在干净数据上的性能,提出基于样本损失值变化统一性的后门样本隔离方案。(剩余9576字)
登录龙源期刊网
购买文章
基于样本损失值变化统一性的后门样本隔离
文章价格:5.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00