注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要:针对传统的Kmeans算法运行的结果依赖于初始的聚类数目和聚类中心,本文提出了一种基于优化初始聚类中心的Kmeans算法。该算法通过量化样本间距离和聚类的紧密性来确定聚类数目K值;根据数据集的分布特征来选取相距较远的数据作为初始聚类中心,避免了传统Kmeans算法的聚类数目和聚类中心的随机选取。(剩余4095字)
登录龙源期刊网
购买文章
基于优化初始聚类中心的Kmeans聚类算法
文章价格:4.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00