融合GRU与注意力机制的胶囊文本分类方法

打开文本图片集
摘 要:为了解决胶囊网络文本分类时不能有效反应不同词的重要程度问题,采用GRU提取上下文特征结合注意力机制学习不同词的重要性进行权重分配,使用胶囊网络克服卷积神经网络池化操作丢失信息的弊端,在今日头条新闻数据集上的实验结果证明文章模型的有效性。
关键词:GRU;胶囊网络;文本分类
中图分类号:TP391.1 文献标志码:A 文章编号:2095-2945(2022)05-0015-04
Abstract: In order to solve the problem that capsule network text classification cannot effectively reflect the importance of different words, GRU is used to extract context features combined with attention mechanism to learn the importance of different words for weight distribution, and capsule network is used to overcome the loss of convolutional neural network pooling operation. The shortcomings of information, the experimental results on news data set from Today's Headline (www.toutiao.com) prove the effectiveness of this model.
Keywords: GRU; capsule network; text classification
随着互联网的不断发展,互联网中的文本信息呈指数性增长。(剩余5576字)