基于GEE的多源遥感影像特征优选方法的水稻种植区信息提取

打开文本图片集
中图分类号:TP79;S127 文献标识码:A 文章编号:1000-4440(2025)06-1159-10
Abstract:Multi-temporal Sentinel-1/2datademonstratesignificantadvantagesinidentifyingandmonitoringrice cultivation incomplex mountainousandhillyareas,aswellasincloudyandrainyenvironments,which providerich information forriceidentification.However,anexcesivenumberoffeature variablesmayleadtodimensionaldisastersandinformationredundancy.Inthis study,a featureselectionmethod wasemployedtoevaluate therecognitionaccuracyoffive feature combination schemes(spectral features,spectral features + vegetation indices,spectral features + vegetation indices + texture features,spectral features + vegetation indices + texture features + radarinformation,and feature selection) forricecultivationarea,using Sentinel-1/2multi-spectralandmulti-temporaldata.Thespatial mappingacuracyof each schemewas alsoanalyzed.Theresults indicatedthat Scheme five,which incorporatedfeature selection,performed the best in rice identification,with an overall accuracy of 92.60% ,a Kappa coefficient of O.903 O,and an F1 score of 92.40 % : Comparedwiththericecultivationareadatain2O24fromtheJiangxi Statistical Yearbook,Schemefiveachievedahighaccuracy of 98.73% in estimating the rice area in Jiangxi province,with a significantly lower relative error compared to
Schemeone-Scheme four.Theresults of this studyconfirm that the integrated application ofmulti-source remote sensing data and multi-temporal feature selection methods caneffectively reduce data redundancy and enhance the accuracy and precision of rice area extraction.
Key words:multi-source remote sensing;rice; Jiangxi province;feature selection;random forest method
粮食安全是国家安全与社会稳定的基石,党的二十大报告强调“全方位夯实粮食安全根基”的重要性,对保障粮食安全提出更高的要求[1]。(剩余12846字)