应用于材料图像分割的Graph-UNet

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:小样本材料图像分割是图像分割领域的研究难点之一。材料图像的微观结构大多数形状各异、纹理复杂且边界模糊,会导致材料图像的分割不准确。Graph-UNet被提出融合U-Net和图卷积神经网络来解决小样本材料图像自动分割的挑战,它将卷积神经网络的多维特征融合和跳跃连接的思想迁移到图卷积神经网络中实现图卷积和图注意力的有效结合,并且建立了一个通用的模块实现特征图和图结构相互转换。(剩余13151字)

试读结束

目录
monitor