基于SCDV及各向异性调整BERT的文本语义消歧方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:文本表示需要解决文本词语的歧义性问题,并能够准确界定词语在特定上下文语境中的语义特征。针对词语的多义性及语境特征问题,提出了一种文本语义消歧的SCDVAB模型。其基于分区平均技术,将场景语料库转换为文档嵌入,并引入各向异性,改进了软聚类的稀疏复合文档向量(SCDV)算法,以提高BERT的语境化表示能力;将调整各向异性后的BERT词语嵌入,作为静态词语向量的文档嵌入,以提升文本语义消歧的能力。(剩余15005字)

目录
monitor