基于子图分解的图聚类神经网络

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要: 聚类是机器学习的核心任务之一,其主要目的是将无标签数据中的不同簇数据进行分离。深度聚类算法使用深度神经网络联合优化聚类目标与特征提取,极大地提高了聚类性能。图聚类是深度聚类领域近两年研究的一个重要分支,其在处理图结构数据上有极大的优势。提出一种新的图聚类方案:基于子图分解的图聚网络,该模型在图自编码器的基础上通过构建多个子图,并在子图的嵌入空间中加以组稀疏约束达到最终的聚类目的。(剩余8356字)

目录
monitor
客服机器人