分数阶Boussinesq-Coriolis方程在变指数Fourier-Besov空间中解的整体适定性和正则性

打开文本图片集
摘要:基于变指数Fourier-Besov函数空间理论,利用Littlewood-Paley分解工具、Fourier局部化方法和Banach压缩映射原理,通过建立线性项与非线性项的估计,证明分数阶Boussinesq-Coriolis方程在临界变指数空间)(R3)中解的整体适定性和Gevrey类正则性.
关键词:Boussinesq-Coriolis方程;变指数Fourier-Besov空间;整体适定性;Gevrey类正则性
中图分类号:O174.2文献标志码:A文章编号:1671-5489(2024)05-1043-09
Global Well-Posedness and Regularity of Solutions to Fractional Boussinesq-Coriolis Equations in Variable Exponent Fourier-Besov Spaces
LI Fengjuan,SUN Xiaochun,WU Yulian
(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
Abstract:Based on the theory of variable exponent Fourier-Besov function spaces,we used Littlewood-Paley decomposition tools,Fourier localization methods and Banach contraction mapping principle.By establishing estimations for both linear and nonlinear terms,we proved the global well-posedness and the Gevrey class regularity of the solutions to the fractional Boussinesq-Coriolis equations in critical variable exponent Fourier-Besov spaces 3)(R3).
Keywords:Boussinesq-Coriolisequation;variable exponent Fourier-Besovspace;globalwell-posedness;Gevrey class regularity
0引言
考虑三维分数阶不可压缩Boussinesq-Coriolis方程解的初值问题:
其中:u=(u(x,).u2(x.).3(x.t),=p(x.),=(x.t)分别为流体在点(x,t)∈R3X(0,∞)的未知速度、未知压力和温度;正常数v,μ和g分别为黏度系数、热扩散系数和重力加速度;e3×u为CiR为流体烧垂直单位矢量e=0装速gk表示浮力△=表示Laplace算子.文献[1-3]给出了问题(1)的物理意义.Wang证明了三维分数阶磁流体方程在临界变指数Fourier-Besov空间中解的整体适定性和解析性;Abidin等5]证明了当初值。(剩余8218字)