一类带记忆项的波动方程解的破裂

打开文本图片集
【摘 要】 在[n]维空间中研究一类带散射阻尼项和记忆项的半线性波动方程的柯西问题。通过引入乘子处理阻尼项,构造检验函数,并且利用迭代方法,得到当非线性项指数满足一定条件时,问题的解会在有限时间内破裂,并给出解的生命跨度的上界估计。
【关键词】 波动方程;记忆项;迭代方法;破裂;生命跨度估计
Blow-up of Solutions for a Class of Wave Equations with Memory Term
Xue Hui1, Ming Sen2
(1.Shanxi Finance & Taxation College, Taiyuan 030024, China;
2.North University of China, Taiyuan 030051, China)
【Abstract】 This paper is concerned with the study of Cauchy problem for the nonlinear wave equation with scattering damping term and memory term for [n]space dimensions. Blow-up of solution in finite time is proved under a certain assumption for the exponent in nonlinear term. By introducing a multiplier to deal with the damping term, constructing a test function and using iteration method, the author obtains upper bound lifespan estimate of solution for the problem.
【Key words】 wave equation; memory term; iteration method; blow-up; lifespan estimate
〔中图分类号〕 O175.29 〔文献标识码〕 A 〔文章编号〕 1674 - 3229(2024)03 - 0021 - 04
0 引言
近年来,非线性波动方程的柯西问题和初边值问题引起广泛关注[1-7],即探究问题解破裂时生命跨度的上界估计、非线性项指数和空间维数三者之间的关系。(剩余5570字)