一种基于SR3D网络的人体行为识别算法

打开文本图片集
摘要:针对三维卷积神经网络无法高效地提取时空特征,提出了一种基于SR3D网络的人体行为识别算法。首先,将三维残差模块的BN层和Relu激活函数放置在三维卷积层之前,更好地提取时空特征;然后,将改进的三维残差块和SE模块组合成SR3D模块,增加重要通道的利用率,提高了网络的识别率。在UCF-101和自制异常行为数据集上进行了大量实验结果表明,SR3D算法分别达到了47.7%和83.6%的识别率(top-1精度),与三维卷积网络(C3D)相比分别提高了4.6和17.3个百分点。(剩余3264字)