环境污染下基于DeepLabv3 + 的道路病害检测研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

文章编号:1674-6139(2025)06-0124-05

中图分类号:X734文献标志码:B

Research on Road Disease Detection Based on DeepLabv3 + Under Environmental Pollution

Long Xing 1,2 ,Liu Zhiyun³,Huang Huaping4,Wang Yi4 ,Guo Yuqing

(1.China Railway Construction Investment Group Co.,Ltd,Zhuhai 519031,China;2.School of Human Settlementsand Civil Engineering,Xi'an Jiaotong University,Xi'an 710o49,China;3.Geological Engineering and Geomatics,Chang'an University,Xi'an 710o54,China;4.China Railway Eryuan Engineering Group Co.Ltd,Chengdu 61OO36,China;5.Wuhan TianjihangInformation Technology Co.,Ltd.,Wuhan 43OO74,China)

Abstract:Regardingtherapiddevelopmentofthetransportationroadsystem,thedensityofroadconstructionnetworkcontiuesto expand,andthefrequentdingofeicleshasledtofrequentanddeepeingroadsurfcediseasesTsuetepeforanceofig waypavementandvehicledrivingsfetysemanticgmentatioodelusingdroerialpotogaphyanddeepexperimetstdied anditsnetworksructureisoptimizedformagedetectionofroaddiseases,timelydetectionandrepairofoaddiseaseproblemsTheexperimentalresultssowthattesmanticsegmentationmodeloftheimproveddeepexperimentalerieshasdetectioaccracyndreal rate of 86.34% and 92.44% forroad potholes,indicatingthe superiority of its improved model inroad diseasedetection.Therefore,the roaddiseasedetectionmodel hasfeasibilityandtechnical referencefor highwaynetwork constructionandvehiclesafety.

Keywords:environmentalpolution;semanticsegmentationmodel;highwayconstruction;roaddiseases;detectionmodel

前言

随着城市化的推进,交通基础设施逐渐完善,多种道路的建设满足了不同地形和使用需要[1]。(剩余5411字)

目录
monitor